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We have studied a stochastic sandpile model with grain dissipation as a generalization of the Oslo sandpile
model. During a toppling event, grains are removed from the pile with a probability p. Scaling arguments and
simulations suggest that an arbitrarily small dissipation rate p yields a noncritical behavior, in contrast to the
robust critical behavior of the Oslo sandpile model.
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I. INTRODUCTION

Sandpile models have been intensively studied since their
introduction as generic examples of self-organized criticality
�SOC� by Bak, Tang, and Wiesenfeld �1,2�. SOC was intro-
duced to address the behavior of a class of slowly driven
systems that showed scale invariant behavior in space and
time without the need for extrinsic tuning of the system pa-
rameters. Self-organized criticality has been suggested as a
common mechanism for these systems, and has been applied
to phenomena spanning from earthquakes to economics
�3–6�.

SOC provides a useful way of categorizing systems and
suggests that the methods used to analyze phase transitions
in statistical mechanics may be used to analyze SOC sys-
tems. These include finite size scaling and the estimation of
power law exponents for different distributions. Power law
exponents may be used to categorize systems into universal-
ity classes.

Given the extensive theoretical and numerical studies of
SOC there has been surprisingly little experimental activity.
However, slowly driven granular piles have been studied by
several experimental groups �7–11�. The question of whether
granular piles may be described as self-organized critical has
only recently been resolved. An experiment on a pile of rice
showed a power law distribution of energy dissipation in
avalanches in a pile of long-grained rice. Piles of rounder
rice produced a stretched exponential distribution �12�.

A stochastic cellular automaton model was introduced by
Frette �13� to mimic the rearrangement disorder in the rice
pile. The model was reanalyzed by Christensen et al. �14�
and has later been referred to as the Oslo sandpile model
�OSM�. This model gave a power law for the energy dissi-
pation distribution, but the exponent did not match the ex-
perimental value and the model contained no parameter that
could be tuned to show a continuous transition from a critical
to a noncritical behavior. It has later been shown that the
OSM is a discrete version of a quenched Edwards-Wilkinson
equation �15,16�.

Markošová et al. �17� studied a simple extension of a
model introduced by Amaral and Lauritsen �18,19� where
they could relate the critical behavior to intermediate values

of a toppling probability. A mean field approach to this
model has been studied by Slanina �20�. Sandpile models
with dissipation of slope have been studied by Manna et al.
�21�.

In this paper, we introduce a generalization of OSM,
which allows for grain dissipation from every position in the
pile, and study its dynamics by simulations. In this model,
slope is conserved, but mass is not, so it is different from
both the model by Markošová et al. �17� and Manna et al.
�21�. The simulation data showed linear system size depen-
dence for the scaling of small avalanches as in the rice pile
experiment. The introduction of grain dissipation gave a cut-
off in the probability density for avalanche sizes as a func-
tion of dissipation rate. The cutoff was present even for ar-
bitrarly small dissipation rates. We found that the probability
density of dissipated energy as a function of energy, system
size, and grain dissipation rate behaved as a generalized ho-
mogeneous function.

II. SIMULATIONS

The Oslo sandpile model consists of a row of sites where
each site is assigned an integer height hi. One unit height
corresponds to one grain. Grains enter the system at i=1 and
leave the system at i=L, where L is the system size. A critical
slope zi

c is assigned to each site i. The critical slopes are
chosen randomly to be either 1 or 2. A grain at the ith site
moves one site toward the outlet when the slope zi=hi−hi+1
exceeds the critical slope, and a new random value for the
critical slope is drawn. As a consequence of grain movement,
the slopes are updated according to the following rule:

If i = 1: �z1 →z1 − 2

z2 →z2 + 1.
�

If 1 � i � L: �zi →zi − 2

zi±1 →zi±1 + 1.
�

If i = L: �zL →zL − 1

zL−1 →zL−1 + 1.
� �1�

The slopes are updated until all sites are stable, that is,
zi�zi

c for all i. Then another grain is added at position i=1:
z1→z1+1. An avalanche is defined as the series of updates
that follow from the addition of one grain.*Electronic address: ejette@fys.uio.no
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We introduce a finite probability p for a grain to leave the
pile when it topples. This is governed by the following dis-
sipation rule:

zi → zi − 1

zi−1 → zi−1 + 1, �2�

which can be interpreted as an inertial effect, that is, that a
grain simply bounces off the pile. We note that the model
conserves slope. The model with p=0 gives the Oslo sand-
pile model, whereas the model with p=1 will remove the
added grain without changing the state of the model. The
model with p=1 is similar to the boundary driven one-
dimensional Bak-Tang-Wiesenfeld in this respect, since the
one-dimensional Bak-Tang-Wiesenfeld model also retains its
state before and after an avalanche when it is in its stationary
state. The dissipated energy will be proportional to the sys-
tem size for both models, but the models do differ in their
avalanche dynamics.

Avalanches are characterized by the potential energy dis-
sipated during an event. One unit of energy is defined as the
loss in potential energy when one grain moves down one
height unit. In the following the energy � will be normalized
by the above defined unit of energy, so � becomes nondimen-
sional.

The measure used to characterize the statistical behavior
of the system is the energy probability density fE, where
fE���d� is defined as the probability for having an avalanche
of size with energy between � and �+d�.

The energy probability density for the OSM simulations
was reported �14� to behave like a power law fE�����−�

except for small avalanches and finite size effects. fE is also
assumed to be a homogeneous function of the variables L
and �, which gives the scaling relations

fE��,L� = L−�g��L−�� = �−�/�g̃�L�−1/�� , �3�

where g and g̃ are scaling functions. The relation �=� /�
follows directly from Eq. �3�. The finite size scaling expo-
nents were estimated to be ��3.5, ��2.25, and ��1.55
�14�. However, the scaling assumptions are only valid for
L ,�	1. L introduces a finite size cutoff in the energy �L
�L�. The average amount of dissipated energy ��	 is propor-
tional to the average number of topplings �s	. It was shown
�15,22� that �s	�L giving the scaling relation 2�−�=1.

Grains that are dissipated cause a discontinuity in the
probability density which scales with the system size, adding
unwanted complexity to the interpretation of simulation data.
The data become more manageable by disregarding the en-
ergy loss from dissipated grains. In the following analysis,
we have disregarded these grain dissipating events when cal-
culating the energy dissipated in avalanches. Figure 1 shows
the probability density for energy dissipated in avalanches.
For p
0 we observe a cutoff which falls short of the finite
size cutoff for the Oslo sandpile model.

Figure 2 shows the energy probability densities for sys-
tems with p=0.01 and varying L value. The graphs for L
=400 to L=3200 have a cutoff which is independent of the
system size, thus the dissipation mechanism introduces an

effective cutoff energy �p, which becomes visible in larger
systems. The slope fitted to the linear part of the log-log plot
gives �=1.56±0.07, indicating that the model behaves simi-
lar to the OSM for ���p.

We argue that a change from the OSM universality class
is reasonable for nonzero p, by showing that scaling ansatz
�3� cannot hold, given that the fraction of grains following
the dissipation rule is independent of the avalanche size.
From scaling ansatz �3� it follows that the size of the largest
avalanche scales as �*�L�. The number of topplings N is
proportional to �*, since the slope values are bounded and the
energy dissipated in a toppling at site i is zi−1. For nonzero
p there is a finite probability that a toppling does not con-
tribute to the energy. If M is the total number of topplings in
the nonconservative model, then �1− p�M is the number of
energy contributing topplings N. The number of grains leav-
ing the pile is pM = p / �1− p�N, for later use we define �
= p / �1− p�, which is related to the system size by �N���
��L2.25. The number of grains in the pile scales as L2 and
this is incompatible with the number of grains that are dissi-
pated. Thus scaling ansatz �3� cannot be valid for large sys-
tem sizes.

Including the dissipation parameter � in the generalized
homogeneous form of the probability density leads to a scal-
ing ansatz

FIG. 1. Log-log plot of the probability density fE�� ,L� as a
function of energy dissipated � by grains following rule �1� only.
The system size is L=400. The grain dissipation probability p var-
ied from 0 to 0.9. The data were binned, and the bin sizes were
increased by a factor of 1.2.

FIG. 2. A log-log plot of the energy probability density
fE�� ,L , p� as a function of dissipated energy �. p=0.01 and the
system sizes vary from 200 to 3200. The graphs show a cutoff
which is independent of system size for L
400. The data were
binned, and the bin sizes were increased by a factor of 1.2.
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fE��,L,�� = �fE���a,L�b,��c� , �4�

where � is an arbitrary parameter, a=� /�, b=1/�, and
c=− /�. � and � are the finite size scaling exponents from
Eq. �3�, and  is a scaling exponent related to the cutoff due
to grain dissipation.

The following expressions are obtained by choosing � so
that it cancels the L ,�, or � dependence in fE

fE��,L,�� = 

�−�/�h�L�−1/�,��/��

L−�h̃��L−�,�L�

��/h̃
˜����/,L�1/� ,

� �5�

where h , h̃, and h̃
˜

are scaling functions. A data collapse of fE
by rescaling with � according to Eq. �5� and =1, is shown
in Fig. 3. The system sizes and � values ranged from L
=3200, �=0.005 to L=200, �=0.08. A data collapse was
achieved for 1.0��1.1.

We can relate the  exponent to the scaling of the average
dissipated energy for grain conserving topplings

��	L =� �fE��,L,��d� =� ���/h̃
˜����/,L�1/�d�

= ���−2��/� uh̃
˜�u,L�1/�du �

L→�
�−1/, �6�

where we have used the scaling relation 2�−�=1, and the
integral converges since dissipation introduces a cutoff in the
energy.

We can show that =1 by calculating the average number
of topplings. Let �zi be the number of units of slope added to
a site during a run of K grain addings. If we assume that the
sandpile is in a stationary state, slope that is added to a site
that must be transported off the site. From toppling rules �1�
and �2� we have that site i will reduce its slope by two with
probability 1− p and by one with probability p, thus the num-
ber of times site i topples is approximately �zi / �2− p� except
for i=L where the site must topple �zi times. In the Appendix
we show that

�zi = �K�2 − p��1 − p�i−1, for i � L

K�1 − p�L−1, for i = L ,
� �7�

and the average number of topplings can be calculated

�s	L =
1

K
�

i=1

L−1
�zi

2 − p
+ �zi� =

1

p
�1 + O��1 − p�L−1�� . �8�

For L→� and ��1 we have that �s	�1/�, by comparison
with Eq. �6� we obtain that =1.

We can now reanalyze the effect of the cutoff due to dis-
sipation by using scaling ansatz �5�. Equation �5� can be
written as

fE��,L,�� = �−�/�fE��0,L�−1/�,��/�� , �9�

where �0 is a constant and where we recognize fE��0 ,x ,y� as
h�x ,y�. If y→� then h�x ,y�→0 independent of x, since this
is equivalent to fE��0 ,x ,y�→0, as y→�. This can be inter-
preted as sending � to infinity in the model, which implies
that all grains are dissipated as soon as they enter the pile.
The scaling ansatz gives a cutoff in the energy due to dissi-
pation, as �−�/, since y=��/�. This is the effective cutoff
observed in Figs. 2 and 3.

III. CONCLUSIONS

In this paper, we have studied a basic dissipative cellular
automaton, aiming to illustrate the effects of dissipation in
the rice pile experiment, in order to capture some of the
qualitative behavior observed in the experiment.

The introduction of dissipation in OSM changes the be-
havior radically. A cutoff in the energy appears, which is
solely caused by the rate of dissipation. This is in accordance
with the findings of Vespignani et al. �23� and Vespignani
and Zapperi �24�. We were able to include the dissipation
parameter in the probability density while keeping its gener-
alized homogeneous form, so dissipation introduced a new
scaling exponent.

The simulation results suggest that the change in behavior
observed in the experiment when the type of rice is changed
from a long-grained rice to a rounder rice, may be interpreted
as a dissipation effect. Assuming that a pile of long-grained
rice will build a rougher surface which will slow down the
grains �12�.

For the long-grained rice that displayed SOC, the cutoff
energy due to dissipation would be large compared to the
energies reached in the experiment. This may explain why
the distribution was not affected by dissipation effects.
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APPENDIX: DERIVATION OF �zi

Here, we derive the expression for �zi. From toppling
rules �1� and �2� we get the interaction between sites and by

FIG. 3. A log-log plot of the energy probability density fE as a
function of dissipated energy �. The system size used for �
=0.005 was L=3200 and the rest of the system size were calculated
from the scaling relation ��L− with =1. The x and y axes were
rescaled by respectively ��/ and �−�/. A good data collapse was
given by 1��1.1. The data was binned, and the bin size in-
creased by a factor of 1.2.
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using the number of topplings for a site i is �zi / �2− p� if i
�L, and �zi if i=L, we derive the recursion relations for �zi
for a run of K avalanches

�z1 =
�z2

�2 − p�
+ K , �A1�

�z1�i�L−1 =
�zi+1

�2 − p�
+

1 − p

2 − p
�zi−1, �A2�

�zL−1 = �zL +
1 − p

2 − p
�zL−2, �A3�

�zL =
1 − p

2 − p
�zL−1. �A4�

By inserting Eq. �A4� for �zL in Eq. �A3� we get

�zL−1 = �1 − p��zL−2. �A5�

We recognize Eq. �A2� as a second-order difference equa-
tion, with the characteristic equation

r2 + �p − 2�r + 1 − p = 0, �A6�

with the solutions r1=1 and r2=1− p.
Equations �A1� and �A5� supply the boundary conditions

for Eq. �A2�, and with p
0 we obtain

�zi = K�2 − p��1 − p�i−1 �A7�

for 1� i�L−1. �zL is found by inserting the expression for
�zL−1 in Eq. �A4�

�zL = K�1 − p�L−1. �A8�
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